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LE‘lTER TO THE EDITOR 

Rigorous exponent inequalities for random walks 

Krzysztof Burdzyt and Gregory F LawlerS 
t Department of Mathematics, GN-50, University of Washington, Seattle, WA 98195, USA 
$ Department of Mathematics, Duke University, Durham, NC 27706, USA 

Received 14 July 1989 

Abstract. The exponents for the resistance of a random walk path and the ‘random walk 
on a random walk’ problem are related to a number of other exponents for random walks. 
Some rigorous inequalities for these exponents are then established. 

Let S be a simple random walk starting at the origin in Zd. For each n, we may consider 
S[O, n] to be a subgraph of the integer lattice; more precisely, we let r,, = (V,,, E,,) be 
the graph with 

V,, = { S , :  O s  t s n} E,  = { { S , ,  S ,+ , } :  O s  r < n}. 
A number of papers (see Dekeyser et a1 1987, Manna et a1 1989 and references therein) 
have discussed the ‘fractal nature’ of the graph r,. Two particular quantities of interest 
have been the effective resistance between 0 and S,, (assuming a unit resistance on 
each edge of r,) and the mean-square displacement of another random walk restricted 
to lie on r,,. While numerical studies and conjectures have been made about these 
quantities, no rigorous mathematical statements have been made. In this letter we 
would like to define appropriate exponents and state what can be said rigorously about 
them. 

The five exponents we discuss are the intersection exponent, the chemical or 
percolation exponent, the (chronological) loop-erasing exponent, the resistance 
exponent, and the exponent for mean-square displacement of a random walk on a 
random walk. All of these exponents have the following properties: they are dimension 
dependent; the value of the exponent is the same for all d > 4; logarithmic corrections 
appear in d = 4; and non-trivial values are taken on for d = 2,3.  As mentioned above, 
the last two exponents were introduced in the physics literature; the intersection 
exponent has been studied in a number of papers in both the physics and mathematical 
literature; the chemical or percolation exponent has been studied by Sahimi et a1 (1984) 
and Movshovitz and Havlin (1988) and is a random walk analogue of the percolation 
dimension for Brownian motion (Burdzy 1989); and the loop-erasing exponent has 
been studied in Lawler (1980, 1986, 1988) where the self-avoiding random walk derived 
from erasing loops is analysed. 

Non-trivial estimates have been given for the intersection exponent and the loop- 
erasing exponent. The purpose of this letter is to show how these estimates give 
non-trivial estimates on the other exponents. Throughout this letter, c will denote an 
arbitrary positive constant which depends only on dimension and which may change 
from line to line. I f f  and g are two functions of 2 or R, we write f -  g if they are 
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asymptotic, i.e. lim,,+m(f( n) /g(  n ) )  = 1; j k g  if there exist positive constants c1, c2 with 
c lg (n ) s f (n )dc2g(n ) ;  a n d f - g  if logf-logg. 

Let 

f(n)=P{S[O, n ]nS[n+1 ,2n]=0} .  

For d 3 5 , f (  n )  3 c > 0. We define the intersection exponent 5 = & by 

d = 4  
d = 2,3. 

(We have defined the exponent for d < 4 to be the power of n in the formula, and for 
d = 4  we have defined it to be the power of the logarithm. We have also chosen the 
signs so that the exponent is positive. We will do similarly for the other exponents.) 
.It is known (Lawler 1985) that 

l4 = f. (1) 
For d < 4  it has been proved that the exponent is well defined and the best rigorous 
estimates are (Burdzy and Lawler 1989a, b, Burdzy et a1 1989) 

:sr,<+ (2) 

;+ ( l / 8 ~ )  C l2 < $. (3) 
Duplantier and Kwon (1988) have conjectured from a conformal invariance argument 
that l2 = 5;  Monte Carlo simulations (Duplantier and Kwon 1988, Burdzy et a1 1989) 
indicate that this value is not far from the true value. For d = 3, Monte Carlo simulations 
suggest 0.28 s 5, d 0.29. 

We will call a time t < n a cut point for r, if S[O, t ]  fl S [  t + 1, n] = 0. Note that 
if t is a cut point, then removal of the edge {St, S f + J  disconnects I',. Let I,,, be the 
indicator function of the event { t  is a cut point for r,,} and 

Since 

f( t v ( n  - t ) )  9 ( 1 t . n )  sf( t ( n  - 1 ) )  

we get 

(Ln) - cn d a 5  

n-'(L,)-(log n)-"2 d = 4  (4) 

(L,)-n'-L d = 2,3. ( 5 )  

Here we use ( ) to denote expectation (we will reserve the E notation for expected 
values of a random walk on a random walk). 

If G = ( V, E) is any connected graph, the distance between vertices on the graph, 
d ( x ,  y ) ,  is defined to be the length of the shortest (necessarily self-avoiding) path in 
G connecting x and y. For the graph r,, we define 

D, = d ( 0 ,  S,,). 

It is clear that if t is a cut point for rn then any path from 0 to S,, must contain the 
edge {S , ,  Therefore 

L, s 0, s n. (6) 
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If follows immediately that ( D , ) X n  for d 5 .  Any subpath of S[O, n] from 0 to S, 
can be combined with any subpath of S[n, n + m] from S,  to S,+,  to get a subpath 
of S[O, n + m] from 0 to S,, , .  We therefore get the subadditivity relation 

( D n + m ) s  (Dn)+(Dm). 
From properties of subadditive functions it follows that (D,) - cn for d b 5. We define 
the chemical or percolation exponent S = a d  by 

n-'( 0.) = (log n ) - 6  d = 4  

( D , ) =  ns d = 2 , 3 .  

We do not actually know that the exponent is well defined. However, we can define 
- 6 and d to be in the lim inf and lim sup of the appropriate quantities, e.g. 

log( D,)  - log n - S4 = lim inf 
n-m -1oglogn 

and similarly for the other quantities. For the remainder of the letter we will define 
exponents as above and let the reader supply the appropriate lim inf and lim sup 
definitions. From (4)-(6) we get 

- 
8,s; &d 1 - l d  d = 2 , 3 .  

Since the root mean square distance of a random walk is n"', we get an immediate 
lower bound of fib 5 which is better than the bound above if d = 2 .  Because r, is the 
entire lattice for d = 2 ,  some have conjectured that S 2  = f; however, r, is not the entire 
lattice so it is not clear whether this conjecture is true. 

The procedure of (chronological) loop-erasing produces a self-avoiding path from 
0 to S,. The procedure is defined as follows: fix n and let p and c be defined by 

p = inf{ t:  1 s t s n, 3s < t with S,s = S,}. 

Then let SI be the path with this loop erased, i.e. 

o s t s u  rr gs t s  n - ( p  - U ) .  
S ;  = 

S r + ( p - u )  

Clearly S' is a subpath of S from 0 to S,. If SI is self-avoiding we stop; otherwise, 
we perform this procedure on s'. Eventually we will get a self-avoiding subpath of S 
from 0 to S, which we denote i. Let A, be the number of points in 3. Then it follows 
immediately that 

L , s D , , < A , .  (7 )  
It has been proved (Lawler 1980) that almost surely A, - cn for d 3 5. We define the 
loop-erasing exponent a = (Yd by 

n-'(A,) = (log n)-O d = 4  

( A , ) = n U  d = 2 , 3 .  

Again it is not known whether the exponent exists; however, it has been shown (Lawler 
1986, 1988) that 

f s g , s a 4 s f  

d = 2 , 3 .  
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It is conjectured that a4 = $, but that the inequality for a d  ( d  = 2,3)  is not sharp. This 
combines with the lower bounds on the percolation exponent to give 

+ d S  -4- <S<' 4 - 2  4 <s3 s s; s: ;q,ss;sf. 
It is easy to give examples of paths with 0, <A, , ,  i.e. such that chronological 

loop-erasing does not give the shortest path from 0 to S,. We conjecture, but have 
not proven, that in fact S f a .  Guttmann and Buisill 1989 have done Monte Carlo 
simulations which suggest that az  = 2 and a3 = 0.81 . . . . 

Assume that a resistance of unit 1 is put on each edge of the graph r,. Let R, be 
the effective resistance from 0 to S, .  In general it is hard to compute effective resistance; 
however, it is easy to see that 

L n s  R , , s  0,. 

Also, resistances satisfy the subadditivity property 

(Rfl+In) s ( R n ) + ( R m ) .  

Therefore, ( R , )  - cn for d 3 5. We define the resistance exponent p = pd by 

n-'(  R , )  = (log n ) - P  

( R , ) = n P  d = 2,3.  

d = 4  

We note that the exponent that we had defined is one half the exponent defined by 
many authors, e.g. the 6 in Dekeyser et a1 (1987). It then follows that 

- P4 4 - s L  P4 z ;<E3 4 p3 4 2 a < pz 4 p2 d 3. 
In particular, it is rigorously proved that the exponent is positive in two dimensions. 
Current conjectures for the actual values of the exponent are p3 = 3 and pz = 4. 

Let G = ( V ,  E )  be a finite connected simple graph. A simple random walk on G 
is the Markov chain X with state space V and transition probability 

if { x ,  y }  E E 
otherwise. 

p ( x ,  y )  = { 
Here v ( x )  is the degree of x, i.e. the number of vertices adjacent to x. It is easy to 
check that the invariant probability for this Markov chain is 

4 ( x )  = ( 2 l E l ) - ' u ( x ) .  ( 8 )  

Suppose that a unit resistance is put on each edge in E. Let 

T~ = inf{t 2 1 :  X ,  = x}. 

Then the effective resistance between x and y, r ( x , y ) ,  is given by (see, e.g., p 54 of 
Doyle and Snell 1984) 

r ( X , y ) =  U ( X ) [ P x { T J ,  < T x } ] - ' .  (9) 
Let e ( x , y )  be the expected number of visits to x before hitting y starting at x, i.e. 

m 
I 

e ( x ,  y )  = 1 P"{x, = x,  T~ > j } .  
j = O  

It is standard that 

e ( x , y ) = [ P X { ~ y < T x } ] - ' .  



Letter to the Editor L27 

Let Fx = inf{ t 3 T ~ :  X, = x}. Since F, is a stopping time, it follows from standard Markov 
chain results that 

It follows from (8)-(11) that 

E ” ( T ~ , ) + E ” ( T , )  =2IElr(x,y). (12) 

Tn = ( E O ( T S , , ) ) .  

( E 0 ( T S p , ) )  = (I~nIRfl). (13) 

We now consider the graph r,, = (V,,, E,,). We are interested in estimating 

By symmetry, ( E o (  T ~ , ) )  = (E4,( T ~ ) ) ;  hence by (12) 

It follows immediately that ( E o (  ~ , , , ) ) = n ’  for d 2 5. For d s 4 we define the exponent 
Y = Y d  by 

n - 2 ( E O ( T s n ) ) =  (log n)-’ d = 4  

(Eo(%, , ) )=  n’ d = 2,3.  

Again it follows almost immediately from ( 1 3 )  and the fact that lEnl = n for d 2 2 that 

Y4 = P4 yd = 1+pd d = 2,3.  

Of course, we can only rigorously assert the appropriate lim inf and lim sup versions 
of the above equations. The last equation is sometimes referred to as the Einstein 
relation. 

There is another natural way of defining a random walk on a random walk exponent 
(see, e.g., Dekeyser et a2 1987) by considering the behaviour of the mean-squared 
distance (IX,l2). This produces two timescales, t and n. For d 3 3 and n =CO we can 
adapt the above argument to show that the expected time until IX , l z  n”* grows like 
n’, if d = 3 ;  n2(log n ) - Y  if d = 4 ;  and n 2  if d 2 5. We certainly expect, although have 
not rigorously proved, that one can invert these relations to get 

d = 3  
d = 4  
d 3 5 .  

For d = 2 ,  the situation is more delicate since the random walk eventually fills the 
entire lattice. In this case, for fixed t, (\X,l’) increases with n to the value t for n =CO. 

It is not so clear how to relate y to (IX,12) in this case. See Manna et a1 (1989) for a 
discussion of this phenomenon. 

We would like to thank M. Barlow and the referee for references on this problem. 
The work of KB is supported by NSF grant DMS 8901255. The work of GFL is 
supported by NSF grant DMS 8702879 and an Alfred P Sloan Research Fellowship. 
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